
Label Delay in Online Continual Learning

Botos Csaba1,3⋆, Wenxuan Zhang2⋆, Matthias Müller3, Ser-Nam Lim4,
Mohamed Elhoseiny2, Philip H.S. Torr1, and Adel Bibi1

1 University of Oxford
2 King Abdullah University of Science and Technology

3 Intel Labs
4 Meta

Abstract. A critical yet often overlooked aspect in online continual
learning is the label delay, where new data may not be labeled due to slow
and costly annotation processes. We introduce a new continual learning
framework with explicit modeling of the label delay between data and
label streams over time steps. In each step, the framework reveals both
unlabeled data from the current time step t and labels delayed with d
steps, from the time step t− d. In our extensive experiments amounting
to 25000 GPU hours, we show that merely increasing the computational
resources is insufficient to tackle this challenge. Our findings highlight
significant performance declines when solely relying on labeled data when
the label delay becomes significant. More surprisingly, state-of-the-art
Self-Supervised Learning and Test-Time Adaptation techniques that uti-
lize the newer, unlabeled data, fail to surpass the performance of a naïve
method that simply trains on the delayed supervised stream. To this
end, we propose a simple, robust method, called Importance Weighted
Memory Sampling that can effectively bridge the accuracy gap caused
by label delay by prioritising memory samples that resemble the most to
the newest unlabeled samples. We show experimentally that our method
is the least affected by the label delay factor, and successfully recovers
the accuracy of the non-delayed counterpart.

1 Introduction

Machine learning models have become the de facto standard for a wide range
of applications, including social media [45], finance [16], and healthcare [30].
However, these models usually struggle when the distribution from which the
data is sampled is constantly changing over time, which is common in real-world
scenarios. This challenge continues to be an active area of research known as
Continual Learning (CL). However, most prior art in CL examines this problem
with a presumption of the immediate availability of labels once the data is
collected. This assumption rarely holds in real-world scenarios.

Consider the task of monitoring recovery trends in patients after surgeries.
Doctors gather health data from numerous post-operative patients regularly.
However, this data does not immediately indicate broader recovery trends or
potential common complications. To make informed determinations, several weeks
⋆ Equal Contribution

2 Botos Cs. et al .

Data stream

Annotator

Input data

~

⇒

Labels

Evaluate

Send for
 labelingTime step

Fig. 1: Illustration of label delay. This figure shows a typical Continual Learning
(CL) setup with label delay due to annotation. At every time step t, the data stream SX
reveals a batch of unlabeled data {xt}, on which the model fθ is evaluated (highlighted
with green borders). The data is then sent to the annotator SY who takes d time steps
to provide the corresponding labels. Consequently, at time step t the batch of labels
{yt−d} corresponding to the input data from d time steps before becomes available.
The CL model can be trained using the delayed labeled data (shown in color) and
the newest unlabeled data (shown in grayscale). In this example, the stream reveals
three samples at each time step and the annotation delay is d = 2.

of extensive checks and tests across multiple patients are needed. Only after these
checks are completed, the gathered data can be labeled as indicating broader
“recovery” or “complication” trends. However, by the time the data is gathered,
assessed, labeled, and a model is trained, new patient data might follow trends that
do not exist in the training data yet. This leads to a repeating cycle: collecting data
from various patients, assessing the trends, labeling the data, training the model,
and then deploying it on new patients. The longer this cycle takes, the more likely
it is going to affect the model’s reliability, a challenge we refer to as label delay.

In this paper, we propose a CL setting that explicitly accounts for the delay
between the arrival of new data and the corresponding labels, illustrated by
Figure 1. In our proposed setting, the model is trained continually over discrete
time steps with a label delay of d steps. At each step, two batches of data are
revealed to the model: unlabeled new samples from the current time step t, and
the labels of the samples revealed at the step t − d. First, we show the naïve
approach where the model is only trained with the labeled data while ignoring
all unlabeled data. While this forms a strong baseline, its performance suffers
significantly from increasing the delay d. We find that simply increasing the
number of parameter updates per time step does not resolve the problem. Hence,
we examine a number of popular approaches which incorporate the unlabeled
data to improve this naïve baseline. We investigate semi-supervised learning,
self-supervised learning and test-time adaptation approaches which are motivated
for slightly different but largely similar settings. Surprisingly, out of 12 different
methods considered, none could outperform the naïve baseline given the same
computational budget. Motivated by our extensive empirical analysis of prior art
in this new setting, we propose a simple and efficient method that outperforms

Label Delay in Online Continual Learning 3

every other approach across large-scale datasets; in some scenarios it even closes
the accuracy gap caused by the label delay. Our contributions are threefold:
• We propose a new formal Continual Learning setting that factors label delay

between the arrival of new data and the corresponding labels due to the latency
of the annotation process.

• We conduct extensive experiments (∼ 25, 000 GPU hours) on various Online
Continual Learning datasets, such as CLOC [11], CGLM [50], FMoW [21]
and Yearbook [29]. Following recent prior art on Budgeted Continual Learn-
ing [28, 49], we compare the best performing Self-Supervised Learning [7],
Semi-Supervised Learning [31] and Test Time Adaptation [41] methods and
find that none of them outperforms the naïve baseline that simply ignores the
label delay and trains a model on the delayed labeled stream.

• We propose Importance Weighted Memory Sampling to rehearse past labeled
data most similar to the most recent unlabeled data, bridging the gap in
performance. IWMS outperforms the naïve method significantly and improves
over Semi-Supervised, Self-Supervised Learning and Test-Time Adaptation
methods across diverse delay and computational budget scenarios with a
negligible increase in computational complexity. We further present an in-
depth analysis of the proposed method.

2 Related Work

Label Delay in Online Learning. While the problem of delayed feedback
has been studied in the online learning literature [44, 57], the scope is limited to
problems of spam detection and other synthetically generated, low-complexity
data [31,36] and often view input images as “side info” [38]. Additionally, meth-
ods and error bounds proposed in [27, 39, 48, 52] are more focused on expert
selection rather than representation learning, most of which cannot generalize
to unstructured, large-scale image classification datasets. Furthermore, most of
the prior art does not differentiate between the past and future unlabeled data.
In our proposal, all unlabeled data is newer than the last labeled data due to
delayed annotation, as illustrated in Figure 17. For a more in-depth analysis of
prior art on online learning, please see our expanded literature review in the
Supplementary Material A.12.

Continual Learning. Early work on continual learning primarily revolved
around task-based continual learning [2,10], while recent work focuses on the
task-free continual learning setting [4, 5, 11]. This scenario poses a challenge for
models to adapt as explicit task boundaries are absent, and data distributions
evolve over time. GDumb [51] and BudgetCL [49] demonstrate that minimalistic
methods can outperform most offline and online continual learning approaches.
RealtimeOCL [28] shows that Experience Replay [15] is the most effective method,
outperforming more popular continual learning methods, such as ACE [10],
LwF [40], RWalk [14], PoLRS [11], MIR [3] and GSS [6], when methods are
normalized by their computational complexities. RealtimeOCL also considers
delay, however, their delay arises from model complexity; in their fast-stream
scenario, the stream releases input-label pairs quicker than models can update,

4 Botos Cs. et al .

Algorithm 1 Single OCL time step with Label Delay
1. The Stream SX reveals a batch of images {xt

i}ni=1 ∼ Dt;
2. The model fθt makes predictions {ŷti}ni=1 for the new revealed batch {xt

i}ni=1;
3. The Annotator Sd

Y reveals labels {yt−d
i }ni=1;

4. The model fθt is evaluated by comparing the predictions {ŷti}ni=1 and true labels {yti}ni=1,
where the true labels are only for testing;

5. The model fθt is updated to fθt+1
using labeled data ∪t−d

τ=1{(xτ
i , y

τ
i)}ni=1 and unlabeled

data ∪t
τ=t−d{x

τ
i }ni=1 under a computational budget C.

causing models to be trained on an older batch of samples. In essence, labels
are still instantly available in RealtimeOCL, while our work examines delay
attributed to the non-instantaneous arrival of labels. RapidOCL [33] highlighted
the exploitation of label-correlation in online continual learning, with a focus on
measuring online accuracy through future samples. In contrast, our framework
allows the models to leverage the more recent, unlabeled data for adaptation.

Semi-Supervised Learning. While the labels arrive delayed, our setting
allows the models to use new unlabeled data immediately. Possible directions
to leverage the most recent unlabeled data entails Pseudo-Labeling (or often
referred to as their broader category, Semi-Supervised Learning) methods [31] and
Self-Supervised Semi-Supervised Learning (S4L) methods [61]. Pseudo-labeling
techniques predict the labels of the samples before their true label becomes
available to estimate the current state of the joint distribution of input and
output pairs. This in turn allows the model to fit its parameters on the estimated
data distribution. On the other hand, S4L integrates self-supervised learning, such
as predicting the rotation of an image or the relative location of image patches,
with the semi-supervised learning framework. We replace the early self-supervised
tasks of S4L [61] with more recent objectives from Balestriero et al . [7]. While a
growing line of work adapts S4L to continual learning to make use of unlabeled
data in continual learning settings, such as CaSSLe [24] in task-agnostic settings
and SCALE [59] in task-free settings, most previous work did not perform a
comprehensive examination of PL and S4L under a strict computational budget.

Test-Time Adaptation. Besides semi-supervised learning, TTA methods
are also designed to adapt models with unlabeled data, sampled from the similar
distribution as the evaluation samples. Entropy regularization methods like
SHOT [42] and TENT [55] update the feature extractor or learnable parameters
of the batch-normalisation layers [37] to minimize the entropy of the predictions.
SAR [47] incorporates an active sampling scheme to filter samples with noisy
gradients. More recent works consider Test Time Adaptation in online setting [1]
or Continual Learning setting [56]. In our experiments, we fine-tuning the model
with ER [15] across time steps and adapting a copy of the model with TTA to
the most recent input samples at each time step.

Label Delay in Online Continual Learning 5

3 Problem Formulation

We follow the conventional online continual learning problem definition proposed
by Cai et al . [11]. In such a setting, we seek to learn a model fθ : X → Y on a
stream S where for each time step t ∈ {1, 2, . . . } the stream S reveals data from a
time-varying distribution Dt sequentially in batches of size n. At every time step,
fθ is required to predict the labels of the coming batch {xt

i}ni=1 first. Followed by
this, the corresponding labels {yti}ni=1 are immediately revealed by the stream.
Finally, the model is updated using the most recent training data {(xt

i, y
t
i)}ni=1.

This setting, however, assumes that the annotation process is instantaneous,
i.e. the time it takes to provide the ground truth for the input samples is negligible.
In practice, this assumption rarely holds. It is often the case that the rate at
which data is revealed from the stream S is faster than the rate at which labels
for the unlabeled data can be collected, as opposed to it being instantaneously
revealed. To account for this delay in accumulating the labels, we propose a
setting that accommodates this lag in label availability while still allowing for
the model to be updated with the most recent unlabeled data. We modify the
previous setting in which labels of the data revealed at time step t will only be
revealed after d time steps in the future.

At every time step t, the Annotator Sd
Y reveals the labels for the samples from

d time steps before, i.e., {(xt−d
i , yt−d

i)}ni=1, while the data stream SX reveals data
from the the current time step, i.e., {xt

i}ni=1. Recent prior art [28,49,51] introduces
more reasonable and realistic comparisons between continual learning methods
by imposing a computational complexity constraint on the methods. Similarly
to [28, 49, 51], in our experiments the models are given a fixed computational
budget C to update the model parameters from θt to θt+1 for every time step
t. To that end, our new proposed setting can be formalized per time step t,
alternatively to the classical OCL setting, as described in Algorithm 1.

Note that this means at each time step t, the stream reveals a batch of
non-corresponding images {xt

i}ni=1 and labels {yt−d
i }ni=1, as illustrated in Figure 1.

With the label delay of d time steps, the images themselves revealed from time step
t− d to time step t can be used for training, despite that labels are not available.

A naïve way to solve this problem is to discard the unlabeled images and
only train on labeled data ∪t−d

τ=1{(xτ
i , y

τ
i)}ni=1, However, it worth noting that the

model is still evaluated on the most recent samples from SX . Thus, training on
the labeled training data leads to the model at least being d steps delayed. Since
in our setting the distribution from which the training and evaluation samples are
drawn from is not stationary, this discrepancy severely hinders the performance,
as discussed in detail in Section 5.

Furthermore, we shall show in Section 6 that the existing paradigms, such
as Test-Time Adaptation and Semi-Supervised Learning, struggle to effectively
utilise newer, unlabeled data to bridge the aforementioned discrepancy. Our
observations indicate that the primary failure is from the excessive computational
demands of processing unlabeled data. To that end, we propose Importance
Weighted Memory Sampling that prioritises performing gradient steps on labeled
samples that resemble the most recent unlabeled samples.

6 Botos Cs. et al .

Algorithm 2 Importance Weighted Memory Sampling
1. At time step t, for each unsupervised batch of size n, {xt

i}ni=1, the model fθ computes
predictions {ỹti}ni=1;

2. For every predicted label ỹti , select labeled samples from the memory buffer {(xM
j , yMj)}

where yMj = ỹti ;
3. Compute pairwise cosine feature similarities Ki,j = cos

(
h(xt

i), h(x
M
i)

)
between each

unlabeled sample xt
i and selected memory samples xM

j ;
4. Select the most relevant supervised samples (xM

k , yMk) by sampling k ∈ {1 . . . |M |} from a
multinomial distribution with parameters Ki,:;

5. Update the model fθ using the selected supervised samples, aiming to match the distribution
of the unlabeled data.

4 IWMS: Importance Weighted Memory Sampling

To mitigate the challenges posed by label delay in online continual learning, we
introduce a novel method named Importance Weighted Memory Sampling
(IWMS). Recognizing the limitation of traditional approaches that either discard
unlabeled data or utilize it in computationally expensive ways, IWMS aims to
bridge the gap between the current distribution of unlabeled data and the
historical distribution of labeled data. Instead of directly adapting the model to
fit the newest distribution with unlabeled data, which is inefficient due to the
lack of corresponding labels, IWMS cleverly adjusts the sampling process from a
memory buffer. This method ensures that the distribution of selected samples
closely matches the distribution of the most recent unlabeled batch. This nuanced
selection strategy allows the continual learning model to effectively adapt to the
most recent data trends, despite the delay in label availability, by leveraging the
rich information embedded in the memory buffer.

As discussed in Section 5, using the most recent labeled samples for training
leads to over-fitting the model to an outdated distribution. Thus, we replace the
newest supervised data by a batch which we sample from the memory buffer, such
that the distribution of the selected samples matches the newest unlabeled data
distribution. The sampling process is detailed in Algorithm 2. It consists of two
stages: first, at each time step t, for every unsupervised sample xt

i in the batch
of size n, we compute the prediction ỹti , and select every labeled sample from the
memory buffer (xM

j , yMj) such that the true label of the selected samples matches
the predicted label yMj = ỹti . In the second stage, we compute the pairwise cosine
feature similarities Ki,j between the unlabeled sample xt

i and the selected memory
samples xM

j by Ki,j = cos
(
h(xt

i), h(x
M
j)

)
, where h represents the learned feature

extractor part of fθ, directly before the final classification layer. Finally, we select
the most relevant supervised samples (xM

k , yMk) by sampling k ∈ {1 . . . |M |} from
a multinomial distribution with parameters K:,j . Thus, we rehearse samples from
the memory which (1) share the same true labels as the predicted labels of the
unlabeled samples, (2) have high feature similarity with the unlabeled samples.

To avoid re-computing the feature representation h(xM) for each sample in
the memory buffer after every parameter update, we store the corresponding
features of the input data computed for the predictions during the evaluation

Label Delay in Online Continual Learning 7

0 100k 200k 300k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

20.3

15.8
12.8
11.7

CLOC

0 2k 5k 7k
Time step

0

10

20

24.1

16.3
15.3
14.8

CGLM

0 1k 2k 3k
Time step

0

20

40

60
63.0
60.5
57.8
55.6

FMoW

0 100 200
Time step

40

60

80

100 97.0
92.0

76.5

63.0

Yearbook

d = 0 d = 10 d = 50 d = 100

Fig. 2: Effects of Varying Label Delay. The performance of a Naïve Online Continual
Learner model gradually degrades with increasing values of delay d.

(Step 4 in Algorithm 1). This technique greatly reduces the computational cost of
our method, but comes at the price of using outdated features. Such trade-off is
studied in detail by contemporary Self-Supervised Literature [13,18,34] observing
no significant impact on performance. We ablate the alternative option of selecting
samples based only on their similarity in the Supplementary Material A.11.

5 The Cost of Ignoring Label Delay
To better understand how label delay influences the performance of a model, we
begin with the Naïve approach, i.e. ignoring the most recent data points until
their label becomes available and exclusively training on outdated labeled samples.
More specifically, we are interested in measuring the performance degradation
under various label delay d and computational budget C scenarios. To this end,
we conduct experiments over 4 datasets, in 4 computational budget and 3 label
delay settings. We analyse the results under normalised computational budget
(Section 5.2) and demonstrate that the accuracy drop can be only partially
recovered by increasing the computational budget (Section A.5).

5.1 Experimental Setup
Datasets. We conduct our experiments on four large-scale online continual learn-
ing datasets, Continual Localization (CLOC) [11], Continual Google Landmarks
(CGLM) [50], Functional Map of the World (FMoW) [21], and Yearbook [29]. The
last two are adapted from the Wild-Time challenge [58]. More statistics of the
benchmarks are in Supplementary. We follow the same training and validation
set split of CLOC as in [11] and o CGLM as in [50] and the official released
splits for FMoW [21] and Yearbook [29].

Architecture and Optimization. Similarly to prior work [28,49], we use
ResNet18 [35] for backbone architecture. Furthermore, in our experiments, the
stream reveals a mini-batch, with the size of n = 128 for CLOC, FMoW, Yearbook
and n = 64 for CGLM. We use SGD with the learning rate of 0.005, momentum
of 0.9, and weight decay of 10−5. We apply random cropping and resizing to the
images, such that the resulting input has a resolution of 224× 224.

Baseline Method In our experiments, we refer to the Naïve method as the
one naively training one labeled data soly. We apply the best continual learning

8 Botos Cs. et al .

mechanism as mentioned by [28] , Experience Replay (ER) [15], to eliminate the
need to compare with other continual learning methods . The memory buffer size
is consistently 219 samples throughout our experiments unless stated otherwise.
The First-In-First-Out mechanism [11,15] to update the buffer. We report the
Online Accuracy [11] at each time step in Step 4 of Algorithm 1 under label
delay d. In our quantitative comparative analysis, for simplicity, we use the final
Online Accuracy scores, denoted by Accd.

Computational Budget and Label Delay. Normalising the computational
budget is necessary for fair comparison across CL methods, thus, we define C = 1
as the number of FLOPs required to make one backward pass with a ResNet18 [35],
similarly to BudgetCL [49] and RealtimeOCL [28]. When performing experiments
with a larger computational budget, we take integer multiplies of C to apply C
parameter update steps per stream time steps. The proposed label delay factor d
represents the amount of time steps the labels are delayed with. Note that, for
C = 1, d = 0, our experimental setting is identical to prior art [11,28].

5.2 Observations

In Figure 2, we analyze how varying the label delay d ∈ {0, 10, 50, 100} impacts
the performance of Naïve on four different datasets, CLOC [11], CGLM [49],
FMoW [21] and Yearbook [29]. The label delay impacts the online accuracy differ-
ently across all scenarios, thus, below we provide our observations case-by-case.

On CLOC, the non-delayed (d = 0) Naïve achieves Acc0 = 20.2%, whereas
the heavily delayed counterpart (d = 100) suffers significantly from the label delay,
achieving only Acc100 = 11.7%. Interestingly, label delay influences the accuracy
in a monotonous, but non-linear fashion, as half of the accuracy drop is caused by
a very small amount of delay: Acc10 −Acc0 = −4.4%. In contrast, the accuracy
degradation slows down for larger delays,i.e. the accuracy gap between two larger
delay scenarios (d = 50 → 100) is rather marginal Acc100 −Acc50 = −1.1%. We
provide further evidence on the monotonous and smooth properties of the impact
of label delay with smaller increments of d in the Supplementary Material A.3.

For CGLM the accuracy gap landscape looks different: the majority of the
accuracy decrease occurs by the smallest delay d = 0 → 10, resulting in a Acc10−
Acc0 = −7.9% drop. Subsequent increases (d = 10 → 50 and d = 50 → 100)
impact the performance to a significantly smaller extent: Acc50 −Acc10 = −1%
and Acc100 −Acc50 = −0.5%.

In the case of FMoW, where the distribution shift is less imminent (i.e. the
data distribution varies less over time), the difference between the delayed and the
non-delayed counterparts should be small. This is the case for the satellite image
data in the FMoW dataset, where the accuracy drops are −2.8%,−2%,−1.9%
for d = 0 → 10 → 50 → 100, respectively.

The Yearbook’s binary classification experiments highlight an important
characteristic: if there is a significant event that massively changes the data
distribution, such as the change of men’s appearance in the 70’s [29] the non-
delayed Naïve (d = 0) suffers a small drop in Online Accuracy (at the middle
of the time horizon t = 130), but quickly recovers as more data starts to

Label Delay in Online Continual Learning 9

appear. In contrast, under small and moderate delay (d = 10, 50), the decline
is more emphasised and the recovery is delayed (at t = 120, 180, respectively).
Interestingly, under large delay (d = 100), the decline is not apparent anymore,
however the Acc100 stagnates until the relevant data arrives (t = 200). Notice,
that such temporal shift is only visible across the profile of the curves, because
the amount of delay is comparable in size to the time horizon, i.e. dmax

tmax
= 1

3 ,
whereas this fraction is close to 0 in our other experiments. Alongside with more
detailed investigation, we provide visual examples of the dataset to support our
claims in the Supplementary Material A.4.

5.3 Section Conclusion

Over- or Under-fitting. While in the experiments we report results under
a single computational budget C per dataset, it is reasonable to suspect that
the results might look different under smaller or larger budget. To this end, we
ablate the effect of C over various delay scenarios, on multiple datasets in the
Supplementary Material A.5.

Common patterns. We argue that the consistent, monotonic accuracy
degradation, present in all of our experiments, is due to the non-stationary
property of the data distribution that creates a distribution shift. Our hypothesis
is supported by the findings of Yao et al . [58]. A complementary argument is
presented by Hammoud et al . [33], stating that the underlying datasets have
high temporal correlations across the labels, i.e. images of the same categories
arrive in bursts, allowing an online learning model to easily over-fit the label
distribution even without using the input images.

Motivation for Delay Specific Solutions. As our experiments suggest
so far, label delay is indeed an extremely elusive problem, not only because it
inevitably results in an accuracy drop, but because the severity of the drop itself
is hard to estimate a-priori. We showed that the accuracy gap always increases
monotonically with increasing delay, nevertheless the increase of the gap can be
gradual or sudden depending on the dataset and the computation budget. This
motivates our efforts of designing special techniques to address the challenges of
label delay. In the next set of experiments, we augment the Naïve training by
utilizing the input images before their corresponding labels become available.

6 Utilising Data Prior to Label Arrival

In our proposed label delay experimental setting, we showed the larger the delay
the more challenging it is for Naïve, a method that relies only on older labeled
data, to effectively classify new samples. This is due to a larger gap in distribution
between the samples used for training and for evaluation. This begs the question
of whether the new unlabeled data can be used for training to improve over
Naïve, as it is much more similar to the data that the model is evaluated on.

We propose four different paradigms for utilizing the unlabeled data, namely,
Importance Weighted Memory Sampling (IWMS), Semi-Supervised Learning
via Pseudo-Labeling (PL), Self-Supervised Semi-Supervised Learning (S4L) and

10 Botos Cs. et al .

0 100k 200k 300k
0

10

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
10

)

20.3

15.8
17.3

14.6
14.5
11.9

CLOC (C=2)

0 2k 5k 7k
0

10

20

24.1

16.3

24.1

14.0
13.4
10.3

CGLM (C=8)

0 1k 2k 3k
0

20

40

60

80
63.0
60.5

64.0

58.2
58.1
48.5

FMoW (C=16)

0 100 200
40

60

80

100

97.0

92.0

92.1
92.0

92.2
92.2

Yearbook (C=16)

0 100k 200k 300k
0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
50

)

20.3

12.8
14.2

12.6
12.5
9.5

0 2k 5k 7k
0

10

20

24.1

15.3

23.5

13.3
12.7
9.4

0 1k 2k 3k
0

20

40

60

80 63.0

57.8
61.3

55.8
55.8
46.0

0 100 200
40

60

80

100 97.0

76.5

77.1
77.2

77.0

78.9

0 100k 200k 300k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
10

0)

20.3

11.7
13.1

11.6

11.5

8.6

0 2k 5k 7k
Time step

0

10

20

24.1

14.8

22.9

12.7
12.1
9.0

0 1k 2k 3k
Time step

0

20

40

60

80
63.0

55.6
58.9

53.6
53.9

43.8

0 100 200
Time step

40

60

80

100 97.0

63.0
64.6

65.3
64.6

66.8

Näıve without delay Näıve IWMS S4L Pseudo-Label TTA

Fig. 3: Comparison of various unsupervised methods. The accuracy gap caused
by the label delay between the Naïve without delay and its delayed counterpart Naïve.
Our proposed method, IWMS, consistently outperforms all categories under all delay
settings on three out of four datasets.

Test-Time Adaptation (TTA). We integrate several methods of each family
into our setting and evaluate them under various delays and computational
budgets. In particular, we adapt each paradigm individually by augmenting the
parameter update (Step 5 of Algorithm 1) of Naïve, described in detail in the
following subsections. Furthermore, to quantify the how much of the accuracy gap
(Gd = AccNaïve

d − AccNaïve
0) is recovered, we use the formula R∗

d =
Acc∗d−AccNaïve

d

|Gd| ,
namely the improvement of the method divided by the extent of the accuracy
gap for a given delay factor d.

6.1 Experiment Setup

Importance Weighted Memory Sampling (IWMS). The only additional
cost of IWMS compared to Naïve is the cost of evaluating the similarity scores,
which is still less than 1% of the inference cost for 100K samples, and can be
evaluated in parallel, therefore we consider it negligible. Since our method simply
replaces the newest supervised samples with the most similar samples from the
replay buffer, we do not require any additional backward passes to compute
the auxiliary objective. Therefore, the computational budget of our method is
identical to the Naïve baseline, i.e., CIMWS = 1.

Label Delay in Online Continual Learning 11

Self-Supervised Semi-Supervised Learning. For integrating S4L meth-
ods, we adopt the most effective approach through iterative optimization of
both supervised and unsupervised losses. We report the best results across the
three main families of contrastive losses, i.e., Deep Metric Learning Family
(MoCo [34], SimCLR [17],and NNCLR [22]), Self-Distillation (BYOL [32] and
SimSIAM [19], and DINO [13]), and Canonical Correlation Analysis (VICReg [9],
BarlowTwins [60], SWAV [12], and W-MSE [23]).

For fair comparison, we normalise the computational complexity of the com-
pared methods. According to [28, 49], Naïve augmented with Self-Supervised
Learning at each time step takes two backward passes, since they augment each
input images to two views, thus CS4L = 2. We provide further explanation of our
S4L adaptation in the Supplementary Material A.2.

Pseudo-Labeling. To make use of the newer unlabeled samples, we adopt
the most common Semi-Supervised Learning technique [31]: Pseudo-Labeling
(PL). To predict the labels of the samples before their true label becomes available
we use a surrogate model gϕ. After assigning the predicted labels {ỹti} to each
input data {xt

i} at time step t for i = 1..n, the main model fθ is updated
over the union of old, labeled memory samples and new pseudo-labeled samples
{(xτ

i , y
τ
i)}t−d

τ=1 ∪ {(xt
i, ỹ

t
i)} using standard Cross Entropy loss. Once fθ is updated,

we update the parameters of the surrogate model gϕ following the momentum
update policy [31] with hyper-parameter λ, such that ϕnew = λϕold + (1− λ)θold.

For simplicity, we ignore the computational cost of the surrogate model gϕ
inferring the pseudo-labels ỹ. Nevertheless, the main model fθ is trained on
double the amount of samples as Naïve, n labeled and n pseudo-labeled, therefore
we define CPL = 2.

Test-Time Adaptation As done for other paradigms, we have extensively
evaluated all reasonable candidates to adapt traditional TTA methods to our
setting. We find performing the unsupervised TTA step the most effective when
only a single update is taken (in Step 5 of Algorithm 1), exactly before the
evaluation step (Step 2 of Algorithm 1) of the next step. Therefore, for all
the parameter updates apart from the last one we perform identical steps to
Naïve Furthermore, we found TTA updates severly impact the continual learning
process of the Naïve when the parameters are iteratively optimised across the
two objectives. Thus, before each TTA step, we clone the model parameters θ
to a surrogate model gϕ, by performing the TTA step (with ϵ hyper-parameter)
using the newest batch of unlabeled data ϕ = θ− ϵ∇θLTTA{xt

i} and perform the
evaluation (Step 2 of Algorithm 1) of the next time step.

To represent the state of the art in TTA, we adapt and compare the following
methods: TENT [55], EATA [46], SAR [47], and CoTTA [56], in Figure 3.
Furthermore, for the result of our hyper-parameter tuning is provided in the
Supplementary Material A.7.

For fair comparison, we train and evaluate all TTA methods under normalised
computational budgets. However, several methods, such as CoTTA [56] and
SAR [47] abuse the absence of formal computational constraints in traditional
Test-Time Adaptation settings by computing the entropy of the predictions of the
input data up to 32× different augmentations. Methods, such as EATA [46] further

12 Botos Cs. et al .

complicate the complexity normalisation problem by using multiple smaller-sized
crops of the input image. To simplify our comparisons, we ignore the cost of
model inference, thus CTTA = 1. More specifically, under a fixed computational
budget C, at every time step, we perform C − 1 supervised steps on fθ identically
to Naïve followed by a single step of TTA.

6.2 Observations

Figure 3 illustrates our most important results of our work. It shows to what
extent we can recover the accuracy gap caused by the label delay between the
Naïve without delay and its delayed counterpart Naïve. We evaluate our proposed
method, IWMS, and compare it against the three adopted paradigms, S4L, PL
and TTA. We report the best performing method of each paradigm with hyper-
parameters tuned on the first 10% of each label delay scenario (further detailed
in the Supplementary Material A.6 and 13. To give the best representation of
the landscape of how these techniques perform, we train and evaluate them over
four datasets, three label delay settings (d = 10, 50, 100) and four computational
budget constraints (C = 2, 8, 16, 16).

IWMS. On the largest dataset, containing 39M samples, CLOC [11], the
accuracy drop of Naïve is Gd = −4.5%,−7.5%,−8.6% for d = 10, 50, 100, re-
spectively. Our proposed method, IWMS, achieves Accd = 17.3%, 14.2%, 13.1%
final Online Accuracy, which translates to Rd = 33%, 19%, 16% recovery for
d = 10, 50, 100, respectively. While there is a slow decline over increasing delays,
the improvement over Naïve is consistent. On CGLM [49], the accuracy drop is
Gd = −7.8%,−8.8%,−9.3% for the three increasing delays, respectively. IWMS
exhibits outstanding results, Accd = 24.1%, 23.5%, 22.9% meaning that the ac-
curacy gap is fully recovered by the method for d = 10. More specifically, the
recovery is Rd = 100%, 93%, 87% for d = 10, 50, 100. The results on FMoW [21]
are even more surprising, as IWMS not only recovers the accuracy gap but
outperforms the non-delayed Naïve counterpart in the d = 10 scenario. More
specifically, the accuracy drops for the increasing delays are Gd = 2.5%, 3.2%4.4%
and Rd = 140%, 67%, 45%. We hypothesise this is due to the fact that under a
large C, repeated parameter updates with sub-optimal sampling strategies lead to
over-fitting to the outdated state of the data distribution, as explained in detail
in Section 7. On Yearbook [29], IWMS performs on-par with Naïve in every
scenario. The accuracy gaps are Gd = −5%,−20.5%,−34% whereas the recover
scores are marginal: Rd = 1%, 0%, 0%. We argue this is due to two factors: the
brevity of the dataset in comparison to the other datasets and the difficulty of
the task without prior knowledge on appearance and fashion trends.

Semi-Supervised Methods. S4L and PL performs very similarly to each
other under all studied scenarios: the largest difference in their performance is 0.7%
on Yearbook, under d = 50 label delay. Therefore, we report their performance
together, picking the better performing variant for numerical comparisons. Notice
that in every scenario the delayed Naïve baseline performance is not be achieved,
which is due to the computational budget constraint. More specifically, since
CSSL = 2× CNaîve, optimising the standard classification objective over the older,
supervised samples for twice the number of parameter updates is more beneficial

Label Delay in Online Continual Learning 13

across all scenarios than optimising the Pseudo-Labeling classification objective
or the Contrastive loss over the newer unlabeled images. In the Supplementary
Material 14, we provide further evidence and explanation of this claim. On
CLOC, S4L slightly outperforms PL by +0.1% for all label scenarios, however
Rd = −27%,−2%,−7% for d = 10, 50, 100, respectively. Similarly, on CGLM,
S4L outperforms PL by +0.6%, for all label scenarios and achieves a negative
recovery score Rd = −29%,−27%,−23%. On FMoW and Yearbook, the
differences between the accuracy of Naïve, S4L and PL are negligible as the
largest improvement over Naïve is +2.3% on Yearbook under the large label
delay scenario d = 100.

TTA. In Figure 3, we find that TTA consistently under-performs every
method, including the delayed Naïve, under every delay scenario on the CLOC,
CGLM and FMoW datasets Nevertheless, on Yearbook TTA successfully out-
performs IWMS, S4L, PL and Naïve by up to +1.7% in the moderate label
delay scenario d = 50. Over the four dataset, the exact extent of the recovery
of the accuracy gap Rd for d = 10, 50, 100, respectively, is as follows: on CLOC
Rd = −87%,−44%,−36%, on CGLM Rd = −77%,−67% − 62%, on FMoW
Rd = −480%,−227%,−159% and on Yearbook Rd = 4%, 11%, 11%. The dis-
proportionately severe negative result on FMoW is due to the otherwise small
accuracy gap Gd = −2.5%,−5.2%,−7.4%. More importantly, we hypothesize that
TTA fails to outperform Naïve because the common assumptions, upon which
TTA methods were designed, are broken. Such assumptions of the Test-Time
Adaptation settings are: (1) before the adaptation takes place, the model has
already converged and achieved a good performance on the training data, (2)
the test data distribution does not change over time and sufficient amount of
unsupervised data is available for adaptation. In contrast, in our setting the
source model is continuously updated between time steps and only a very limited
number of samples are available from the newest distribution for adaptation.

7 Analysis of Importance Weighted Memory Sampling
We first perform an ablation study of our IWMS to show the effectiveness
of the importance sampling. Then, we show our performances under different
computational budgets and buffer sizes.

Analysis on forgetting over past samples In Figure 4, we report the
backward transferability of the learned representation. This is done on a held-out,
ordered validation set where the timestamp is used for ordering. On CLOC,
all methods perform similarly due to poor data quality as reported in the
Supplementary Material A.9. On CGLM, our method not only surpasses the
performance of others, but achieves ∼ 2× the accuracy of the S4L, PL, Naïve
and non-delayed Naïve baseline on CGLM. This means that the representation
learned by our sampling technique is far more robust and generalises better
not only to future but past examples as well. On FMoW, the best result is
achieved by the Semi-Supervised methods, nevertheless our method outperforms
the non-delayed Naïve in all scenarios. Finally, on Yearbook we see that under
low label delay (d = 10) all results are clustered around 97%, however IWMS
and Naïve performs best under larger delays (d = 50, 10).

14 Botos Cs. et al .

0 200k 400k
4

6

8

10

12
B

ac
kw

ar
d

T
ra

n
sf

er
(d

=
10

)

6.9

6.0
6.4

6.7
6.6

CLOC (C=2)

0 20k 40k 60k 80k
20

30

40

50

60

32.2

34.2

28.8

33.1

57.2

CGLM (C=8)

0 20k 40k 60k

50.0

52.5

55.0

57.5

53.6

56.4
56.8
57.4

55.4

FMoW (C=16)

0 5k 10k
85

90

95

100
97.2

96.8

97.1

97.3

97.0

Yearbook (C=16)

0 200k 400k
4

6

8

10

12

B
ac

kw
ar

d
T

ra
n

sf
er

(d
=

50
)

6.9

6.2

6.9

6.8

6.9

0 20k 40k 60k 80k
20

30

40

50

60

32.2

25.0

33.1

31.8

56.2

0 20k 40k 60k

50.0

52.5

55.0

57.5

53.6

56.7
56.6

57.2

55.6

0 5k 10k
85

90

95

100

97.2
97.3

94.0
96.4

97.4

0 200k 400k
Samples in the Past

4

6

8

10

12

B
ac

kw
ar

d
T

ra
n

sf
er

(d
=

10
0)

6.9

6.4

6.8
6.7
6.6

0 20k 40k 60k 80k
Samples in the Past

20

30

40

50

60

32.2

36.7
35.1

34.6

56.2

0 20k 40k 60k
Samples in the Past

50.0

52.5

55.0

57.5

53.6

54.4

57.4
56.6

54.3

0 5k 10k
Samples in the Past

85

90

95

100
97.2

94.9

91.0

94.8

95.5

Näıve w/o delay Näıve S4L Pseudo-Label IWMS

Fig. 4: Backward transfer. Measuring forgetting on the withheld validation set.

0 2k 4k 6k
Time step

0

10

20

O
n

lin
e

A
cc

u
ra

cy

23.3

18.4

14.8

Sampling Strategy (d=10)

WR

RR

NR

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

22.2

17.3

13.1

Sampling Strategy (d=100)

WR

RR

NR

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

20.5
19.6
18.7
17.8

Memory Size (d=10)

80k

40k

20k

10k

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

19.7
18.7
17.3
16.2

Memory Size (d=100)

80k

40k

20k

10k

Fig. 5: Effect of sampling strategy (left), memory sizes (right). We report
the Online Accuracy under the least (top: d = 10) and the most challenging (bottom:
d = 100) label delay scenarios on CGLM [50].

Analysis on Memory Sampling Strategies. Note that while our method,
IWMS is a prioritised sampling approach, it has some similarities to Naïve,
except for the sampling strategy. While the Naïve method uses the most recent
labeled data and a randomly sampled mini-batch from the memory buffer for
each parameter update, our method provides a third option for constructing
the training mini-batch, which picks the labeled memory sample that is most
similar to the unlabeled data. When comparing sampling strategies, we refer
to the newest batch of data as (N), the random batch of data as (R) and the
importance weighted memory samples as (W).

In Figure 5 left, we first show that in both delay scenarios (d = 10 and
d = 100) replacing the newest batch (N) with (W) results in almost doubling

Label Delay in Online Continual Learning 15

the performance: +8.5% and +9.1% improvement over Naïve, respectively. In-
terestingly enough, when we replace the (N) with uniformly sampled random
buffer data (R) we report a significant increase in performance. We attribute this
phenomenon to the detrimental effects of label delay: even though Naïve uses the
most recent supervised samples for training, the increasing discrepancy caused
by the delay d = 10 and d = 100 forces the model to over-fit on the outdated
distribution.

Analysis on the Memory Size. We study the influence of buffer size on our
proposed IWMS. In particular, we show the performance of our algorithm under
the buffer size from 10K to 80K in Figure 5 (right). Even though IWMS relies on
the images sampled from the buffer to represent the new coming distribution, its
performances remain robust under different buffer sizes: the largest performance
gap between memory sizes of 10K and 80K is a marginal 2.5%.

8 Conclusion and Future Work

We motivate modeling real-world scenarios by introducing the label delay problem.
We show how severely and unpredictably it hinders the performance of approaches
which naïvely ignore the delay. To address the newfound challenges, we adopt the
three most promising paradigms (Pseuodo-Labeling, S4L and TTA) and propose
our own technique (IWMS). We provide extensive empirical evidence over four
large-scale datasets posing various levels of distribution shifts, under multiple
label delay scenarios and, most importantly, under normalised computational
budget. IWMS simply stores and and reuses the embeddings of every observed
sample during memory rehearsal where the most relevant labeled samples to the
new unlabeled data are rehearsed. Due to its simplicity, the robustness against
changes in the data distribution can be implemented very efficiently.

9 Acknowledgement
This work is supported by a UKRI grant Turing AI Fellowship (EP/W002981/1)
and EPSRC/MURI grant: EP/N019474/1. Adel Bibi has received funding from
the Amazon Research Awards. The authors thank Razvan Pascanu and João
Henriques for their insightful feedback. We also thank the Royal Academy of
Engineering.

16 Botos Cs. et al .

References

1. Alfarra, M., Itani, H., Pardo, A., Alhuwaider, S., Ramazanova, M., Pérez, J.C.,
Cai, Z., Müller, M., Ghanem, B.: Revisiting test time adaptation under online
evaluation. arXiv preprint arXiv:2304.04795 (2023) 4

2. Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., Page-
Caccia, L.: Online continual learning with maximal interfered retrieval. In: Advances
in Neural Information Processing Systems (NeurIPS) (2019) 3

3. Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., Page-
Caccia, L.: Online continual learning with maximal interfered retrieval. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 11849–11860. Curran
Associates, Inc. (2019), http://papers.nips.cc/paper/9357-online-continual-
learning-with-maximal-interfered-retrieval.pdf 3

4. Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In:
Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 3

5. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. In: Advances in Neural Information Processing Systems
(NeurIPS) (2019) 3

6. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. Advances in neural information processing systems 32
(2019) 3

7. Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T.,
Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised
learning. arXiv preprint arXiv:2304.12210 (2023) 3, 4

8. Bang, J., Koh, H., Park, S., Song, H., Ha, J.W., Choi, J.: Online continual learning
on a contaminated data stream with blurry task boundaries. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9275–9284 (2022) 32

9. Bardes, A., Ponce, J., LeCun, Y.: VICReg: Variance-invariance-covariance regu-
larization for self-supervised learning. In: International Conference on Learning
Representations (ICLR) (2022) 11, 20

10. Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau, J., Belilovsky, E.: New
insights on reducing abrupt representation change in online continual learning. In:
International Conference on Learning Representations (ICLR) (2021) 3

11. Cai, Z., Sener, O., Koltun, V.: Online continual learning with natural distribu-
tion shifts: An empirical study with visual data. In: International Conference on
Computer Vision (ICCV) (2021) 3, 5, 7, 8, 12, 20, 21, 24, 25, 27, 32

12. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignment. Advances in Neural
Information Processing Systems (NeurIPS) (2020) 11, 20

13. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Eemerging properties in self-supervised vision transformers. In: International
Conference on Computer Vision (ICCV) (2021) 7, 11, 20

14. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In: Proceedings
of the European conference on computer vision (ECCV). pp. 532–547 (2018) 3

15. Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr,
P.H., Ranzato, M.: Continual learning with tiny episodic memories. arXiv preprint
(2019) 3, 4, 8, 24

http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf
http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf

Label Delay in Online Continual Learning 17

16. Chen, L., Pelger, M., Zhu, J.: Deep learning in asset pricing. Management Science
70(2), 714–750 (2024) 1

17. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: International Conference on Machine Learning
(ICML) (2020) 11, 20

18. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: International Conference on Computer Vision (ICCV) (2021) 7,
26, 27

19. Chen, X., He, K.: Exploring simple siamese representation learning. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2021) 11, 20, 27

20. Chen, Z., Liu, B.: Lifelong machine learning, vol. 1. Springer (2018) 32
21. Christie, G., Fendley, N., Wilson, J., Mukherjee, R.: Functional map of the world. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 6172–6180 (2018) 3, 7, 8, 12, 20

22. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: With a little help
from my friends: Nearest-neighbor contrastive learning of visual representations. In:
International Conference on Computer Vision (ICCV) (2021) 11, 20

23. Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised
representation learning. In: International Conference on Machine Learning (ICML)
(2021) 11, 20

24. Fini, E., da Costa, V.G.T., Alameda-Pineda, X., Ricci, E., Alahari, K., Mairal, J.:
Self-supervised models are continual learners. In: Conference on Computer Vision
and Pattern Recognition (CVPR) (2022) 4

25. Fini, E., Lathuiliere, S., Sangineto, E., Nabi, M., Ricci, E.: Online continual learning
under extreme memory constraints. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16.
pp. 720–735. Springer (2020) 32

26. Flaspohler, G.E., Orabona, F., Cohen, J., Mouatadid, S., Oprescu, M., Orenstein, P.,
Mackey, L.: Online learning with optimism and delay. In: International Conference
on Machine Learning. PMLR (2021) 32

27. Gao, H., Ding, Z.: A novel machine learning method for delayed labels. In: 2022
IEEE International Conference on Networking, Sensing and Control (ICNSC) (2022)
3, 32

28. Ghunaim, Y., Bibi, A., Alhamoud, K., Alfarra, M., Al Kader Hammoud, H.A.,
Prabhu, A., Torr, P.H., Ghanem, B.: Real-time evaluation in online continual
learning: A new hope. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2023) 3, 5, 7, 8, 11, 20, 32

29. Ginosar, S., Rakelly, K., Sachs, S., Yin, B., Efros, A.A.: A century of portraits: A
visual historical record of american high school yearbooks. In: Proceedings of the
IEEE International Conference on Computer Vision Workshops. pp. 1–7 (2015) 3,
7, 8, 12, 20, 22, 23

30. Gkotsis, G., Oellrich, A., Velupillai, S., Liakata, M., Hubbard, T.J., Dobson, R.J.,
Dutta, R.: Characterisation of mental health conditions in social media using
informed deep learning. Scientific reports 7(1), 45141 (2017) 1

31. Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H., Bifet, A.: A
survey on semi-supervised learning for delayed partially labelled data streams. ACM
Computing Surveys (2022) 3, 4, 11, 32

32. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., Piot, B., Kavukcuoglu, K., Munos,
R., Valko, M.: Bootstrap your own latent a new approach to self-supervised learning.
In: Advances in Neural Information Processing Systems (NeurIPS) (2020) 11, 20,
27

18 Botos Cs. et al .

33. Hammoud, H.A.A.K., Prabhu, A., Lim, S.N., Torr, P.H.S., Bibi, A., Ghanem,
B.: Rapid adaptation in online continual learning: Are we evaluating it right? In:
International Conference on Computer Vision (ICCV) (2023) 4, 9, 21, 29, 32

34. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2020) 7, 11, 20

35. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 7, 8

36. Hu, H., Kantardzic, M.: Sliding reservoir approach for delayed labeling in streaming
data classification. In: 2017 Proceedings of the 50th Hawaii International Conference
on System Sciences (2017) 3, 32

37. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) 4

38. Joulani, P., Gyorgy, A., Szepesvári, C.: Online learning under delayed feedback. In:
International Conference on Machine Learning. pp. 1453–1461. PMLR (2013) 3

39. Kuncheva, L.I., Sánchez, J.S.: Nearest neighbour classifiers for streaming data with
delayed labelling. In: 2008 Eighth IEEE International Conference on Data Mining.
IEEE (2008) 3, 32

40. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence 40(12), 2935–2947 (2017) 3

41. Liang, J., He, R., Tan, T.: A comprehensive survey on test-time adaptation under
distribution shifts. arXiv preprint arXiv:2303.15361 (2023) 3

42. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hy-
pothesis transfer for unsupervised domain adaptation. In: International Conference
on Machine Learning (ICML) (2020) 4

43. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning.
Advances in neural information processing systems 30 (2017) 32

44. Mesterharm, C.: On-line learning with delayed label feedback. In: International
Conference on Algorithmic Learning Theory (2005) 3, 32

45. Nasir, J.A., Khan, O.S., Varlamis, I.: Fake news detection: A hybrid cnn-rnn based
deep learning approach. International Journal of Information Management Data
Insights 1(1), 100007 (2021) 1

46. Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., Tan, M.: Efficient test-
time model adaptation without forgetting. In: International Conference on Machine
Learning (ICML) (2022) 11, 26

47. Niu, S., Wu, J., Zhang, Y., Wen, Z., Chen, Y., Zhao, P., Tan, M.: Towards stable test-
time adaptation in dynamic wild world. In: International Conference on Learning
Representations (ICLR) (2023) 4, 11, 26

48. Plasse, J., Adams, N.: Handling delayed labels in temporally evolving data streams.
In: 2016 IEEE International Conference on Big Data (Big Data) (2016) 3, 32

49. Prabhu, A., Al Kader Hammoud, H.A., Dokania, P.K., Torr, P.H., Lim, S.N.,
Ghanem, B., Bibi, A.: Computationally budgeted continual learning: What does
matter? In: Conference on Computer Vision and Pattern Recognition (CVPR)
(2023) 3, 5, 7, 8, 11, 12, 20, 21, 22, 24, 25

50. Prabhu, A., Cai, Z., Dokania, P., Torr, P., Koltun, V., Sener, O.: Online continual
learning without the storage constraint. arXiv preprint arXiv:2305.09253 (2023) 3,
7, 14, 20, 21

51. Prabhu, A., Torr, P.H., Dokania, P.K.: Gdumb: A simple approach that questions
our progress in continual learning. In: European Conference on Computer Vision
(EECV) (2020) 3, 5

52. Quanrud, K., Khashabi, D.: Online learning with adversarial delays. Advances in
neural information processing systems (2015) 3, 32

Label Delay in Online Continual Learning 19

53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014) 23

54. Souza, V.M., Silva, D.F., Batista, G.E., Gama, J.: Classification of evolving data
streams with infinitely delayed labels. In: 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA) (2015) 32

55. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time
adaptation by entropy minimization. In: International Conference on Learning
Representations (ICLR) (2021) 4, 11

56. Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation.
In: Conference on Computer Vision and Pattern Recognition (CVPR) (2022) 4, 11,
26

57. Weinberger, M.J., Ordentlich, E.: On delayed prediction of individual sequences.
IEEE Transactions on Information Theory (2002) 3, 32

58. Yao, H., Choi, C., Cao, B., Lee, Y., Koh, P.W.W., Finn, C.: Wild-time: A bench-
mark of in-the-wild distribution shift over time. Advances in Neural Information
Processing Systems 35, 10309–10324 (2022) 7, 9, 20, 21, 32

59. Yu, X., Guo, Y., Gao, S., Rosing, T.: Scale: Online self-supervised lifelong learn-
ing without prior knowledge. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2023) 4

60. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: International Conference on Machine Learn-
ing (ICML) (2021) 11, 20

61. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: Self-supervised semi-supervised
learning. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 1476–1485 (2019) 4

20 Botos Cs. et al .

A Supplementary Material

A.1 Dataset Statistics

We conduct our experiments on four large-scale online continual learning datasets,
Continual Localization (CLOC) [11], Continual Google Landmarks (CGLM) [50],
Functional Map of the World (FMoW) [21], and Yearbook [29]. The last two are
adapted from the Wild-Time challenge [58]. More statistics of the benchmarks
are in Supplementary.

The first, Continual Localization (CLOC) [11] which contains 39M images
from 712 geolocation ranging from 2007 to 2014. The second is Continual Google
Landmarks (CGLM) [50] which contains 430K images over 10788 classes. Followed
by that, we report our experiments on Functional Map of the World (FMoW) [21]
adapted from the Wild-Time challenge [58]. The dataset contains 14,696 satellite
images, from 2002 to 2017, with the task of predicting the land type. Last, we
show our results on the Yearbook dataset [29] containing 33,431 frontal-facing
photos from American high-school yearbooks. The photos were taken in the
time-period between 1930-2013 and represent changes in fashion, gender and
ethnicity over the years. The task is a binary classification problem: predicting
the gender of the student based on the photo.

A.2 Implementation Details of S4L

For integrating S4L methods, we adopt the most effective approach through
iterative optimization of both supervised and unsupervised losses. This process
involves optimising the standard Cross Entropy loss on labeled data (similar
to Naïve) and minimising contrastive loss on unlabeled data, utilising a bal-
anced approach until exhausting the computational budget. We conducted an
exhaustive search over the possible multi-objective optimisation variants (such as
iterative and joint optimisation) and determined the best result is achieved when
the contrastive loss is minimised separately for the first half of the parameter
update steps, followed by minimising the supervised loss for the second half of
the update steps. We report the best results across the three main families of con-
trastive losses, i.e., Deep Metric Learning Family (MoCo [34], SimCLR [17],and
NNCLR [22]), Self-Distillation (BYOL [32] and SimSIAM [19], and DINO [13]),
and Canonical Correlation Analysis (VICReg [9], BarlowTwins [60], SWAV [12],
and W-MSE [23]).

For fair comparison, we normalise the computational complexity [28,49] of the
compared methods. We find that while SSL methods may take multiple forward
passes, potentially with varying input sizes, the backward pass is consistently done
only once among the variants, therefore, we choose the number of backward passes
to measure the computational complexity of the resulting methods. According to
this computational complexity constraint, Naïve augmented with SSL at each
time step takes two backward passes, one for computing the gradients of the
Cross Entropy over the labeled samples and one for the Contrastive Loss over
the unlabeled samples, thus CS4L = 2.

Label Delay in Online Continual Learning 21

0 10k 20k 30k
0.0

2.5

5.0

7.5

C
L

O
C

-
O

n
lin

e
A

cc
u

ra
cy

C = 1

0 10k 20k 30k
0

5

10

C = 2

0 10k 20k 30k
0

5

10

15

C = 4

0 5k 10k 15k
0

10

20

C = 8

0 1k 2k 3k
Time step

0

1

2

3

4

C
G

L
M

-
O

n
lin

e
A

cc
u

ra
cy

0 1k 2k 3k
Time step

0

2

4

6

0 1k 2k 3k
Time step

0

5

10

0 1k 2k 3k
Time step

0

5

10

15

d=0

d=1

d=3

d=5

d=10

d=20

d=30

d=40

d=50

d=60

d=70

d=80

d=90

d=100

Fig. 6: Monotonous degradation of Online Accuracy with regards to label delay
d, over multiple datasets, CLOC [11] and CGLM [49], under various computational bud-
gets, C = 1, 2, 4, 8. The accuracy gradually drops at every time step t as the function
of the label delay d. However the extent of the degradation is non-linear: The initial
smallest increases in label delay have severe impact on the performance. In contrast,
the rate of degradation slows down even for an order of magnitude larger increments
when the labels are already delayed. See Figure 7 for the summary of the final values.

A.3 Monotonous Online Accuracy Degradation

We argue the persistent drop in the Online Accuracy is due to the non-stationary
property of the data distribution that creates a distribution shift. Our hypothesis
is supported by the experimental results, illustrated in Figure 6: the Online Acc
gradually decreases as the function of label delay d, at any given time step t.
Furthermore, in Figure 7, we summarize the final Online Accuracy scores, i.e.
the Online Accuracy value at the final time step of each run

Our claims are reinforced by the findings of Yao et al . [58]. A complementary
argument is presented by Hammoud et al . [33], stating that the underlying
datasets have high temporal correlations across the labels, i.e. images of the same
categories arrive in bursts, allowing an online learning model to easily over-fit
the label distribution even without using the input images.

A.4 Qualitative Analysis of Label Delay

A case study of the distribution shift in the Yearbook experiments.
While Online Accuracy is a well established performance metric for Online
Continual Learning [11, 33, 49, 50], it can conceal some of the most important
characteristics of the underlying dataset. To highlight a direct connection between
the distribution shift and its immediate impact on the model performance, we

22 Botos Cs. et al .

0 25 50 75 100
Delay

5

10

15

20

25

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CLOC - delay profile

C=10

C=5

C=4

C=2

C=1

0 25 50 75 100
Delay

5

10

15

20

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CGLM - delay profile

C=12

C=8

C=6

C=4

C=3

C=2

C=1

Fig. 7: Delay Profile. Each trajectory shows the Final Online Accuracy, i.e. the
Online Accuracy evaluated at the last time step of each run, at a fixed computational
budget C. On both datasets the most severe accuracy degradation occurs in the first
quarter (d = 0 → 25). In contrast, on CGLM [49], the degradation is not significant in
lower compute regimes C ≤ 4.

illustrate the Top-1 Accuracy of the current batch at each time step in Figure 8.
The experimental settings are identical to the main experiments on Naïve, detailed
Section 5.2.

In this experiment, we describe several observations: first, the models perform
at per-chance level accuracy until the first batch of labeled data arrives. Notice
that the per-chance level is not 50% because the dataset is biased (contains more
male than female portraits). However as the ratio improves over time, the random
classifier’s accuracy gets closer to 50%.

Before the distribution shift. In the smallest delay scenario (yellow curve),
the delay is identical to a lag of three years between making the predictions and
receiving the labels. Under such delay, the model quickly reaches close-to-optimal
accuracy under just a few time steps and performs identically to the non-delayed
counterpart (blue curve). In the moderate delay scenario (green curve), the model
stays "idle" for a longer time (equivalent of 17 years) because of the delay of
the first labeled batch. Nevertheless, the delayed model reaches similarly good
performance after a time steps. Interestingly, the severely delayed model (red
curve), exhibits a steep increase in performance, at t = 1972, exactly 34 years
after observing the first sample (t = 1938).

During the distribution shift. The steep increase in the most severely
delayed scenario (red curve) coincidentally overlaps with a major distribution
shift in the appearance of one of the two classes. This shift simultaneously impacts
the performance of all four models, however the rate at which their performance
recovers differs, due to the label delay. While in general it is an immensely
difficult problem to detect and trace the changes of the data distribution, due
to hidden latent variables (such as socio economic factors, genetic diversity of
the population, cultural and political trends), Ginosar et al . [29] identified and
tracked many of such variables. One of these factors, namely the "fraction of

Label Delay in Online Continual Learning 23

1938 1960 1970 1980 1990 2000 2010 2020
Year

40

60

80

100

T
op

-1
A

cc
u

ra
cy

of
C

u
rr

en
t

B
at

ch 97.7
96.9
92.2

98.4

Yearbook

No delay

d = 3 years

d = 17 years

d = 34 years

Fig. 8: (Left) Top-1 Accuracy of Naïve on the current batch (of time step t) of
Yearbook. (Right) Report from Ginosar et al . [29] on "the fraction of male students
with an afro or long hair." The drop in Top-1 Accuracy over time strongly correlates
with the change in appearance of one of the two classes in the Yearbook [29] dataset.
The larger the delay, the longer it takes to recover the close-to-perfect accuracy.

Example of Class F

Example of Class M

Year
1969 1972 1975 1978 1981 1984

Fig. 9: Examples from the Yearbook dataset [29] during the time where the visual
appearance of men (bottom row) changes drastically resulting in an accuracy drop of
an online classifier, regardless of the label delay.

male students with an afro or long hair", is highly correlated (in the temporal
dimension) with the accuracy drop in our experiments, as illustrated in the
right-hand side of Figure 8.

The reason behind the accuracy drop. In the qualitative experiments of
the section titled "What time specific patterns is the classifier using for dating?",
Ginosar et al . [29] reports that convolutional neural networks, such as VGG [53],
learn to extract features from the hairstyles of the subjects. Although the task
is slightly different, classification of the year of the photograph, we hypothesise
that one of the most discriminative features learned by the model are related to
the hairstyles, as it is the most influential variable in terms of the accuracy of
four independently trained models.

After the distribution shift. The recovery of the accuracy can be charac-
terised by two factors: 1) the severity of the level degradation and 2) the duration

24 Botos Cs. et al .

0 100k 200k 300k
0

10

20

30

40
C

L
O

C
-

O
n

lin
e

A
cc

u
ra

cy
35.6
27.8

25.2
25.2

22.0
19.6
18.0
14.8

d = 0

0 100k 200k 300k
0

10

20

30
15.4
14.8
14.6
14.0
13.7
13.5
12.0

d = 10

0 100k 200k 300k
0

10

20

30

11.0
11.1

11.0

10.7
10.8

10.0

d = 50

0 100k 200k 300k
0

10

20

30

09.3

09.5

09.3

09.4
09.4

09.6

d = 100

0 1k 2k 3k 4k
Time step

0

10

20

C
G

L
M

-
O

n
lin

e
A

cc
u

ra
cy

22.2

17.5
14.7
11.5
09.7
07.4
04.5

0 1k 2k 3k 4k
Time step

0

10

20
14.7
12.4
11.0
09.1
07.8
06.4
04.1

0 1k 2k 3k 4k
Time step

0

10

20

13.4
11.3
10.0
08.1
07.0
05.6
03.6

0 1k 2k 3k 4k
Time step

0

10

20

12.8
10.8
09.4
07.9
06.8
05.4
03.4

C=12 C=8 C=6 C=4 C=3 C=2 C=1

Fig. 10: Diminishing returns of increasing the computational budget C over four label
delay regimes d = 0, 10, 50, 100, on two datasets. While in many real-world scenarios
simply increasing the budget C to improve the overall performance, when the labels
are delayed the improvements may become marginal. Interestingly, this phenomena is
emphasized on the CLOC [11] dataset, as the trajectories collapse to a single curve as
the delay increases d = 0 → 100. In contrast, on CGLM [49] the relative improvements,
i.e. the vertical distances between the lines, may shrink going from d = 0 → 10, but
stay consistent for d = 10 → 100. The final scores are summarized by Figure 11.

of the recovery. Both factors show strong dependency on the underlying label
delay factor: the larger the delay the larger the degradation and the longer the
recovery length. Notice how closely the slightly delayed, yellow curve (d = 3
years) follows the non-delayed, blue curve in terms of duration, while the extent
of the accuracy drop is larger for the delayed counterpart. On the other hand,
the moderately and severely delayed models (green and red curves, respectively)
apparently reach a lower-bound in performance degradation, where larger delay
does not further reduce the accuracy. Nevertheless, the recovery of the severely
delayed model is slower and occurs later than the moderately delayed model.

A.5 The impact of label delay on the scaling property of C
The exploration of the impact of label delay on computational efficiency and
accuracy across different settings reveals important insights into the performance
and scalability of Naïve, an Experinece Replay model [15], which simply waits for
every sample to receive its corresponding label before using it as a training data.
In this section, through extensive quantitative comparison under different
label delay d and computational budget C regimes, we offer a comprehensive
overview of how these key factors interact to influence model performance on
two large-scale datasets: CLOC [11] and CGLM [49].

Diminishing Returns. Figure 10 highlights the phenomenon of diminishing
returns on investment in the computational budget C across four different label

Label Delay in Online Continual Learning 25

2 4 6 8 10
Computational Budget C

5

10

15

20

25

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CLOC - C scaling profile

2 4 6 8 10 12
Computational Budget C

5

10

15

20

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CGLM - C scaling profile

d = 0 d = 1 d = 5 d = 10 d = 50 d = 100

Fig. 11: Compute Scaling Profile. Each trajectory shows the Final Online Accu-
racy, i.e. the Online Accuracy evaluated at the last time step of each run, at a fixed
computational budget C. We show sub-linear improvement w.r.t. subsequent increases
in C, even in the non-delayed (d = 0) scenario. Moreover, the influence of label delay
on the scaling property varies between the two datasets: while on CLOC [11] large
delays (d = 100) prevent the model from benefiting from more parameter updates, on
CGLM [49] label delay (for d > 1) only seems to offset the Final Online Accuracy, but
does not impact rate of improvement.

delay regimes (d = 0, 10, 50, 100). Notably, while augmenting C typically yields
performance improvements, these gains become increasingly marginal in the
presence of delayed labels. The impact of label delay is markedly pronounced in
the CLOC dataset, where the performance trajectories converge into a singular
trend as the delay escalates from d = 0 to d = 100. Conversely, the CGLM
dataset exhibits a contraction in the relative improvements (vertical distances
between performance trajectories) as delay transitions from d = 0 to d = 10, yet
these differences remain relatively stable for delays extending from d = 10 to
d = 100.

Compute Scaling Profile. In Figure 11, the concept of a Compute Scaling
Profile is introduced, displaying the Final Online Accuracy – the accuracy mea-
sured at the last time step of each run – for various levels of computational budget
C. This figure elucidates the sub-linear scaling of performance improvements
with respect to incremental increases in C, a trend observable even without label
delays (d = 0). The effects of label delay diverge between the datasets; CLOC
sees a significant impediment to performance gains from additional parameter
updates at high delays (d = 100), while in CGLM, the delay primarily shifts the
Final Online Accuracy without diminishing the rate of improvement.

Gradual Monotonous Degradation. Figure 6 presents a nuanced view
of how Online Accuracy monotonically degrades with increasing label delay (d)
across different computational budgets (C = 1, 2, 4, 8). This degradation is not
linear; initial increments in label delay incur a steep decline in performance,
whereas the rate of decline moderates for larger increments of delay, showcasing
a nonlinear impact on model accuracy over time.

26 Botos Cs. et al .

0 100k 200k 300k
Time step

0

5

10

15

O
n

lin
e

A
cc

u
ra

cy

13.5
13.5
13.1
10.9

CLOC (d=10, C=2)

0 100k 200k 300k
Time step

0

5

10 10.8

11.4
10.9

8.7

CLOC (d=50, C=2)

0 100k 200k 300k
Time step

0.0

2.5

5.0

7.5

10.0
9.6

10.2
9.8

8.1

CLOC (d=100, C=2)

0 2k 4k 6k 8k
Time step

0

5

10

13.4

9.3
9.3
8.9

CGLM (d=10, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.5

8.7
8.7
8.4

CGLM (d=50, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.0

8.2
8.2
7.9

CGLM (d=100, C=8)

Naive mocov3 ressl nnbyol

Fig. 12: Comparison of the best performing SSL based methods after hyper-parameter
tuning

Delay Profile. Finally, Figure 7 encapsulates the Delay Profile, depicting
the Final Online Accuracy at various computational budgets (C). Both datasets
exhibit the most substantial accuracy reductions in the initial quarter of delay
increments (d = 0 → 25). Interestingly, the CGLM dataset demonstrates a
negligible degradation in lower computational regimes (C ≤ 4), indicating a
potential resilience or adaptive capability under specific conditions.

While increased computational budget generally improves the performance,
the presence of label delays introduces a complex dynamic that can significantly
hinder these benefits. The distinct behaviors observed across the CLOC and
CGLM datasets further suggest that the dataset characteristics play a pivotal role
in the decision making whether investment in additional compute is warranted
or not. We suggest that such decision should be made on a case by case basis,
rather than extrapolating from publicly available benchmarks.

A.6 Breakdown of SSL methods

In Figure 12 we show the performance of the best performing SSL based methods
after hyper-parameter tuning. We observe that the performance of the SSL
methods is highly dependent on the dataset and the delay setting. However, we
apart from MoCo v3 [18], the methods perform similarly to Naïve on CLOC. On
the other hand on CGLM they have insignificant differences in performance, but
consistently underperform Naïve.

A.7 Breakdown of TTA methods

In Figure 13 we show the performance of the best performing TTA based methods
after hyper-parameter tuning. We observe that the performance of the TTA
methods are consistently worse than Naïve on both CLOC and CGLM, under all
delay settings. We observe that in the most severe delay scenario (d = 100) the
performance of EAT [46] and SAR [47] is comparable to Naïve on CLOC, while
CoTTA [56] avoids the catastrophic performance drop.

Label Delay in Online Continual Learning 27

0 100k 200k 300k
Time step

0

5

10

15

O
n

lin
e

A
cc

u
ra

cy

13.5
11.0
11.0
11.0
11.0
11.0
11.0

CLOC (d=10, C=2)

0 100k 200k 300k
Time step

0

5

10
10.8
9.1
9.0
9.0
9.0

5.3

CLOC (d=50, C=2)

0 100k 200k 300k
Time step

0.0

2.5

5.0

7.5

10.0 9.6

7.7

4.6
4.3

0.4

CLOC (d=100, C=2)

0 2k 4k 6k 8k
Time step

0

5

10

13.4

7.6

7.6
7.6

7.6

CGLM (d=10, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.5

6.8
6.8
6.8
6.8

CGLM (d=50, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.0

6.4
6.4
6.4
6.4

CGLM (d=100, C=8)

Naive sar tent cotta eat

Fig. 13: Comparison of the best performing TTA based methods after hyper-parameter
tuning

0 10k 20k 30k
Time step

0

2

4

6

8

O
n

lin
e

A
cc

u
ra

cy

7.7
7.7
7.4

5.8
5.7
5.2

7.0

CLOC (d = 10, C=2)

BYOL

SimSiam

MoCo V3

SimCLR

VicReg

Barlow Twins

Naive C=1

0 10k 20k 30k
Time step

0.0

2.5

5.0

7.5

10.0

O
n

lin
e

A
cc

u
ra

cy

9.6
9.5
9.2

6.8
6.4
6.0

7.5

CLOC (d = 10, C=10)

BYOL

SimSiam

MoCo V3

VicReg

SimCLR

Barlow Twins

Naive C=5

0 10k 20k 30k
Time step

0.0

2.5

5.0

7.5

10.0

O
n

lin
e

A
cc

u
ra

cy

9.9
9.8
9.6

6.4
6.0

7.4

CLOC (d = 10, C=20)

BYOL

MoCo V3

SimSiam

SimCLR

Barlow Twins

Naive C=10

Fig. 14: Detailed breakdown of various Self-Supervised Learning methods from each
family. Results are shown across varying number of parameter updates C = 2, 10, 20
under the d = 10 scenario.

A.8 Comparison of S4L to Naïve when using the same amount of
supervised data

While in our main experiments S4L fails to outperform Naïve (in Section 6), we
show that it is mostly due to the computational constraint of our experiments. In
order to test our hypothesis, we run a series of experiments on the S4L variants,
illustrated in Figure 14. In this experiment, instead of limiting the Computational
Budget C, we directly restrict the number of parameter updates to test if optimis-
ing the joint objective of Naïve and the given Self-Supervised Learning method
improves the performance of the model at all. Our results indicate positive im-
provement over Naïve for MoCo-V3 [18], SimSiam [19] and BYOL [32] consistently
across multiple settings with increasing number of parameter updates.

First, on the left hand side of Figure 14, both the Naïve and the S4L variants
take only a single parameter update per time step (thus C = 2 for all, except
Naïve, where C = 1). On the first 10% of the CLOC dataset [11], this results in a
modest, nevertheless clear improvement over Naïve, up to +0.7%. Followed by
that, in the middle, every model takes five parameter updates per time step.
Notice that Naïve has a stricter computational budget, C = 5, to match the rest
of the experiments. Consistently with our findings in Section A.5, Naïve only
benefited marginally from the increase in compute, due to diminishing returns,
7.0% → 7.5%. On the contrary, the previously highlighted S4L variants show a
larger improvement over the increase in number of updates, e.g . 7.7% → 9.6%.

28 Botos Cs. et al .

Consequently, this increases the gap between the Naïve and the S4L methods.
Finally, on the right hand side of the figure, we show when the models are
updated ten times in each time step, the improvement plateaues for both the
Naïve and the S4L variants.

Conclusion of this set of experiments is two-fold: when granted equal amount
of parameter updates, S4L methods outperform Naïve across different settings.
However, computing the parameter gradients w.r.t. the joint objective of S4L
costs approximately twice the amount that of the Naïve: CS4L ≃ 2 × CNaïve.
Due to the well-known property of Self-Supervised Learning methods, sample
inefficiency, our main experiments show that "spending" the compute on more
frequent Naïve updates is more beneficial than optimising the joint S4L objective,
even when the training data is heavily delayed.

A.9 Examples of the Importance Weighted Memory Sampling on
CLOC

Fig. 15: Correctly labeled memory recalls. In the subfigure’s caption “Newest"
refers to the newest unsupervised image observed by the model and “iwm" refers to the
sample drawn from the memory by our proposed sampling method. The numbers refer
to the corresponding true label IDs.

On CLOC, we report similar scores to Naïve due to high noise in the data.
To provide evidence for our claims we visualize the supervised data sampled from
the memory buffer by our Importance Weighted Memory Sampling method. In
Figure 15, we show that our method is capable of guessing the correct location of
the unsupervised sample (the left hand side of the image pairs) and recalling a
relevant sample from memory. In contrast, the incorrect memory recalls hurt the
performance even though the content of the samples might match. We illustrate
such cases in Figure 16, where it is obvious that in some cases the underlying
image content has no information related to the location where the picture was
taken at. In such scenarios, the only way a classifier can correctly predict the
labels is by exploiting label correlations, e.g . classifying all close-up images of

Label Delay in Online Continual Learning 29

Fig. 16: Incorrectly labeled memory recalls. In the subfigure’s caption “Newest"
refers to the newest unsupervised image observed by the model and “iwm" refers to the
sample drawn from the memory by our proposed sampling method. The numbers refer
to the corresponding true label IDs.

flowers to belong to the same geo-location, even though the flowers are not unique
to the location itself. Or consider the pictures taken at social gatherings (second
row, second column from the right), where a delayed classifier without being
exposed to that specific series of images has no reason to correctly predict the
location ID. Our claims are reinforced by the findings of [33].

A.10 Visual Explanation of our Experimental Framework

We provide visual guides for explaining our experimental framework. In Figure 17,
we emphasize the main difference between our setting and the general setting
of partially labeled data-streams: while prior art does not differentiate between
old and new unsupervised data, our work focuses specifically on the scenario
when all unsupervised data is newer then the supervised data. In Figure 18, we
show the two types of data that our models work with: outdated supervised data,
and newer, unsupervised data. The task is to find a way to utilize the newer
unsupervised data to augment the Naïve approach, that simply just waits for
the labels to become available to update its parameters. The most challenging
component in our experiments is the computational budget factor that allows
only a certain amount of forward and backward passes through the backbone.

30 Botos Cs. et al .

Fig. 17: Our experimental setup (top): After a fixed amount of time steps all
labels become available. This allows us to focus on utilizing future unsupervised samples
effectively. Partial labeling setup (bottom): in the generic setting, when the data
collection rate is higher than the annotation rate, some samples might never receive
labels.

Fig. 18: Experimental setup: in our experiments we show how increased label delay
affects the Naïve approach that simply just waits for the labels to arrive. To counter
the performance degradation we evaluate three paradigms (Self-Supervised Learning,
Test-Time Adaptation, Importance Weighted Memory Sampling) that can augment the
Naïve method by utilizing the newer, unsupervised data.

Label Delay in Online Continual Learning 31

A.11 Two-stage vs single-shot sample selection

In Section 4, we outlined our proposed two-stage sample selection method, IWMS.
In this experiment we show empirical evidence and analysis on why predicting
the class-labels first then doing similarity matching leads to better results than
simply using a similarity score over all the memory samples. In Figure 19, we
illustrate the evolution of the similarity scores of the two matching policies. On
the left, the matching is done purely based on the similarity scores, whereas
on the right only those samples were compared against those memory samples
whose labels match the predicted labels. In the middle plot, we show that by
implementing the two-stage selection, we increase the effectivity of the similarity
matching by a large margin, +7.8%.

0.3 0.4 0.5 0.6
Similarity Score

Similarity Matching without Classification

300

600

900

1200

1500

1800

2100

2400

2700

3000 0 2k 4k 6k 8k
Time step

0

10

20

O
n

lin
e

A
cc

u
ra

cy

23.5

15.7

Performance of Similarity Matching Policy

Two-stage

Single-shot

0.0 0.2 0.4 0.6
Similarity Score

Similarity Matching after Classification

300

600

900

1200

1500

1800

2100

2400

2700

3000

Fig. 19: The evolution of Similarity Scores between the unsupervised and memory
samples over time. On each histogram, we plot the distribution of the cosine similarity
scores between the feature representations of the yet to be labeled samples and the
samples in the memory that already received their labels. On the top row we show the
initial distributions and going from top down, the evolution of the two distribution is
illustrated over the time steps.

32 Botos Cs. et al .

A.12 Extended Literature Review on Online Learning

Online Learning vs Online Continual Learning: Online Learning and Online
Continual Learning, while both involve learning from data arriving sequentially,
differ fundamentally in scope. Online Learning typically deals with single-task
streams, often assumed to be from an i.i.d. distribution, as outlined in section 2.3
of [20] and the introduction of [25]. In contrast, Online Continual Learning (OCL)
is more concerned with non-stationary streams that undergo frequent changes in
distribution, where mitigating forgetting is one of several challenges [8, 25,43].

Non-i.i.d. distribution of unsupervised data: While our work focuses
on evolving distributions, work such as Weinberger et al . [57] and Flaspohler et
al . [26] only considers label delay while the distribution a time-invariant, con-
sequently completely omitting the problem of distribution shift. Majority of
the prior online learning work [26,27,31,36,39,44,48,52,54,57,58] ignores the
difference between past and future unsupervised data. In our proposal, all unsu-
pervised data is newer than the last supervised data. We illustrate the difference
between the two different types of unsupervised data in Figure 17.

Considering catastrophic forgetting: Continual Learning, both online
and offline, is concerned about performing well on previously observed data, often
referred to as backward transfer of the learned representations [26, 27,31,36, 39,
44, 48, 52, 54, 57, 58]. This is different from Online learning where the problem
of forgetting is not considered. Even in more recent Online Continual Learning
work, backward transfer have been given slightly lower priority [11, 28,33] where
the authors have reported them only in the appendix.

	Label Delay in Online Continual Learning

